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1,3

AND HARRY T. VALENTINE
2

1Department of Forest Ecology, P.O. Box 27, 00014 University of Helsinki, Finland
2USDA Forest Service, P.O. Box 640, Durham, New Hampshire 03824 USA

Abstract. Allometric theories suggest that the size and shape of organisms follow
universal rules, with a tendency toward quarter-power scaling. In woody plants, however,
structure is influenced by branch death and shedding, which leads to decreasing crown ratios,
accumulation of heartwood, and stem and branch tapering. This paper examines the impacts
on allometric scaling of these aspects, which so far have been largely ignored in the scaling
theory. Tree structure is described in terms of active and disused pipes arranged as an infinite
branching network in the crown, and as a tapering bundle of pipes below the crown.
Importantly, crown ratio is allowed to vary independently of crown size, the size of the trunk
relative to the crown deriving from empirical results that relate crown base diameter to breast
height diameter through crown ratio. The model implies a scaling relationship in the crown
which reduces to quarter-power scaling under restrictive assumptions but would generally
yield a scaling exponent somewhat less than three-quarters. For the whole tree, the model
predicts that scaling between woody mass and foliage depends on crown ratio. Measurements
on three boreal tree species are consistent with the model predictions.

Key words: allometry; biomass; branching network; fractal dimension; pipe model; quarter-power
scaling.

INTRODUCTION

Woody plants are exceptional among living organisms

in that they carry a substantial mass of senescent tissue

in their bodies. The trunks and branches of large trees

may contain more than half of their weight as

heartwood, which takes virtually no part in the

metabolic function of the tree (Vanninen et al. 1996,

Perez et al. 2004). Retention of senescent tissue would

not be evolutionarily stable in most animals, which tend

to minimize their energy consumption in movement

(Maynard Smith 1982). By contrast, the retention of

dead mass appears vital for mechanical support to

anchor trees in the ground and to prevent buckling or

toppling under strong winds or snow (Greenhill 1881,

Mattheck 1998).

It would be surprising if this difference did not have

an influence on the evolution of form in woody plants as

compared with mobile animals, yet it has been largely

ignored by authors who have advanced models of

regularities in the form of living organisms (McMahon

1973, Mandelbrot 1983). The most recent unified theory

of structure, the quarter-power scaling rules for fractal-

like branching networks (West et al. 1997, 1999, Enquist

2002), has stimulated theoretical discussion (Kozlowski

and Konarzewski 2004), as well as empirical tests of the

predicted allometries (West et al. 1999, Enquist 2002,

Meinzer et al. 2005, Pretzsch 2006). However, although

recognized in principle (Enquist 2002), consideration of

the effects of branch death and heartwood formation is

also absent in the quarter-power scaling model.

A generally accepted theory of heartwood formation

does not exist, but a good candidate is provided by the

pipe model in its original form (Shinozaki et al. 1964).

The pipe model describes trees as bundles of active and

disused woody pipes, where the dynamics of the disuse

of pipes represents heartwood formation. Related

predictions and their implications for stem taper have

already been tested in connection with growth models

(Mäkelä 2002, Valentine and Mäkelä 2005).

According to the pipe model (Shinozaki et al. 1964),

heartwood formation is associated with twig and branch

death: as the active woody pipes running from fine roots

to foliage lose their connection with foliage they become

disused, remaining embedded in the trunk and large

branches. Senescence of twigs inside the crown proceeds

as foliage expands towards the surface of the crown

where light can be more readily captured, leading to the

formation of a cavity inside the volume (Horn 1971).

Furthermore, as the tops of crowns increase in height,

the lower branches may senesce and fall in response to

shading by neighbors, leaving a bare trunk. Trunk

length does not scale with crown dimensions (Assmann

1970, Holdaway 1986). Nonetheless, the trunk may

comprise a considerable part of a tree’s mass.

In this paper, we further develop the theory of

allometric scaling in woody plants on the basis of the

pipe model. The approach draws from West et al. (1999)

but with modifications. We define the crown as an

infinite branching network, where foliage has a fractal

dimension (Mandelbrot 1983). Accounting for disuse of
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pipes inside the crown leads to relaxing the assumptions

of area-preserving and volume-filling branching (West et
al. 1999). For the whole tree, the fractal approach is not

directly applicable because the trunk does not scale with
the crown dimensions. Following consistent empirical

results, we relate the weight of the bare stem to crown
weight and crown ratio (Valentine et al. 1994, Kantola
and Mäkelä 2004). The predictions of the model are

compared with data on three boreal species. Finally, we
discuss the general implications of the results.

THE MODEL

Pipe model trees

A pipe model tree has the following properties
(Shinozaki et al. 1964):

1) Each unit of leaf is attached to an active pipe of
unit cross-sectional area and zero taper that runs from

the petiole to a unit of fine root through a network of
branches, stem, and woody roots. In aggregate, a bundle
of active pipes is area preserving.

2) Following branch and twig death and shedding,
some pipes turn into disused pipes that lose their

connection to the foliage, stop growing and become
embedded in the woody structure. The bundle of active

and disused pipes tapers.
3) Inside the crown, disused pipes are formed as

foliage expands towards the surface of the crown,
shading the inner part. This leads to the formation of

a cavity inside the crown envelope.
4) Below the live crown, whole branches become

detached from the foliage as the tree grows. This process
leads to the self-pruning of the crowns and results in the

formation of the bare trunk and the phenomenon of
‘‘crown rise.’’ The disused pipes remain in the bare

trunk, giving it the characteristic taper.
In order to investigate the allometric scaling in the

pipe model trees, we apply a fractal approach (Mandel-
brot 1983) resembling the fractal-like scaling model by

West et al. (1999). However, the below-crown trunk
cannot be included in the fractal analysis because in

fractals, the length of the first internode, i.e., the trunk,
should be proportional to total length, i.e., tree height.

This cannot be expected in real trees where crown ratio
largely depends on tree age and the history of
population density during the tree’s life-time (Assman

1970). Our analysis is therefore cast in two phases
starting with the crown only, then extending to the

trunk.

Scaling in fractal crowns

The fractal model describes a tree with N ! ‘

branching levels, starting from the trunk (level 0) and
ramifying into n identical daughter branches at each

branching level k. The length of a branching unit or
internode, lk, decreases at each level by the factor c,
hence lkþ1 ¼ clk. The diameter of the branching unit at
level k is rk. The consecutive diameters follow the rule
rkþ1¼ n�a/2 rk where a � 1. In addition, the diameter of

individual active pipes, ak, is conserved from one level to

the next: akþ1¼ ak. Finally, internodal length scales with

internodal diameter as lk } ra
k (see Appendix A for a list

of symbols).

The branch tips of this branching system define a

fractal with dimension z, related to c and n as c¼ n�1/z

(Mandelbrot 1983). Branch tips are identified with a unit

foliage, their assemblage representing total foliage mass,

MF. Foliage mass therefore scales with total length, L0,

as MF } Lz
0 (Appendix B).

It can be shown that, in this fractal crown, woody

mass scales as M } L
ð2=aþ1Þ
0 , and further, that a ¼ 2/za

(Appendix C). This leads to the following scaling rule:

MF } Mz=ðzaþ1Þ: ð1Þ

Clearly, if a ¼ 1 and z ¼ 3, the result reduces to the

quarter-power scaling proposed by West et al. (1997,

1999). In the pipe model tree, however, (1) a . 1 because

of twig senescence, and (2) z , 3 because of the cavity

created inside the crown as a result of twig senescence.

The presence of heartwood inside the crown is well

documented (Vanninen et al. 1996, Meinzer et al. 2005,

Longetaud et al. 2006), but we are not aware of any

studies that have quantified the taper parameter a. By

contrast, there is ample empirical evidence concerning

the fractal dimension z (e.g., Zeide and Pfeifer 1991,

Mäkelä and Sievänen 1992, Ilomäki et al. 2003).

Scaling in whole trees with variable crown ratios

As noted earlier, the fractal approach does not apply

to the trunk below the live crown, because the length of

the trunk does not scale with that of the crown. Instead,

crown ratio, rC, may vary according to the growth

history of the tree. Crown ratio is defined by HC¼ rCH,

where HC is crown length and H is tree height.

Generally, HC } L0 with HC � L0 because of the

branching angle. Here, we shall assume for simplicity

that HC ¼ L0, a condition only strictly true in species

with monopodial growth.

The trunk tapers because of the variable length of the

disused pipes embedded in it. Denote the basal area of

the stem at crown base by A, and that at the stem base

by B. A key assumption in our derivation of a scaling

rule for the whole tree is one based on empirical

observation, suggesting that the tapering of the trunk

can be approximated with the crown ratio (Valentine et

al. 1994):

A ¼ rCB: ð2Þ

This result appears to have no direct theoretical basis,

however, it is approximately consistent with both stem

form as projected by the theory of constant strain

(Morgan and Cannell 1994) and the dynamic develop-

ment of trees according to the pipe model, given realistic

patterns of crown rise (Mäkelä 2002, Valentine and

Mäkelä 2005).
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Using Eq. 2, we show in Appendix D that in a tree

with a fractal crown, foliage scales with total above-
ground woody mass, MT, approximately as

MF } ðr2
CMTÞz=ðazþ1Þ: ð3Þ

The scaling relationship is accurate if average (activeþ
disused) pipe length inside the crown is 0.5(L0)

(Appendix D). This result has the significant implication
that the allometric relationship between wood and
foliage should depend on how crown ratio is distributed

in the data set. If crown ratio increases with increasing
foliage mass, the allometric exponents should appear

larger than z/(az þ 1). By contrast, if crown ratio
decreases with increasing foliage mass, the allometric

exponents should appear smaller than z/(az þ 1).
In the following sections, we set out to test these

scaling predictions against empirical data.

MATERIAL AND METHODS

In order to test the model predictions (Eqs. 1 and 3),
biomass data for foliage, wood in the crown, and wood

below crown, are needed. For a stringent test of Eq. 4,
both cross-sectional and longitudinal data sets are
required. Such measurements are not standard in forest

research. However, a few studies have recently been
conducted that lend themselves ideally for our purpose.

The data sets comprise biomass and dimensional
measurements on Norway spruce (Picea abies (L)
Karst.) (Kantola and Mäkelä 2004), Scots pine (Pinus

sylvestris (L.)) (Vanninen et al. 1996, Vanninen and
Mäkelä 2000), and silver birch (Betula pendula Roth.)

(Parviainen 1999, Ilomäki et al. 2003). In all data sets,
the same measurement procedure was used to determine

biomass of foliage, branches, and stems. The woody
biomass can be further divided into within-crown and
below-crown components (except in Parviainen 1999).

In addition, tree height, crown length, diameter at breast
height, and diameter at crown base were measured.

Crown base was defined as the base of the continuous
crown, with no more than two consecutive internodes
without live branches.

Norway spruce.—29 trees were sampled from three
permanent experimental sites in southern Finland, aged

25, 67, and 86 years (Kantola and Mäkelä 2004). The
two older sites were further divided into three plots that

had undergone different thinning treatments: control
(five sample trees each), normal thinning (four sample
trees each), and heavy thinning (three sample trees

each). Five sample trees came from the unthinned,
young plot. Trees were selected to include trees from all

dominance classes.
Scots pine.—In the cross-sectional data set, data came

from a 44-year-old stand in southern Finland with one
dense and one sparse plot, including 11 sample trees
(Vanninen and Mäkelä 2000). Trees from all dominance

classes were selected. (One heavily suppressed tree was
discarded as an outlier because its foliage mass was

clearly declining.) In the longitudinal data set, 18

dominant trees were sampled to include a wide age

range from 20 to 250 years (Vanninen et al. 1996). Two

site types, fertile and barren, were included.

Silver birch.—The cross-sectional data set comes from

a 29-year-old stocking experiment in southern Finland,

including 18 sample trees from a dense (planting density

5000 trees/ha), medium (1600 trees/ha), and sparse (400

trees/ha) plot (Ilomäki et al. 2003). Trees from all

dominance classes were sampled. The longitudinal data

set consists of 12 dominant trees from seven sites, with

heights ranging from 1.8 m to 27.8 m and ages from

three to 74 years (Parviainen 1999). This data set does

not separate stem within and below crown.

Statistical methods.—The scaling exponents of Eqs. 1

and 3 were determined from a linear regression of the

log-transformed equations. A one-tailed t test was

applied to compare the exponent with the value 0.75

predicted by the quarter-power law.

RESULTS

The scaling exponent between foliage and woody

mass in crowns (Eq. 1) was estimated to vary between

0.70 and 0.75 in our data set consisting of Betula

pendula, Pinus sylvestris, and Picea abies (Fig. 1). These

values suggest that, assuming z , 3, a could be very

slightly larger than 1. However, the scaling exponents

are not statistically significantly smaller from the

prediction by the quarter-power scaling model, which

suggests the value of 3/4 for the exponent (West et al.

1997, 1999, Enquist 2002; P ¼ 0.49, P ¼ 0.33, and P ¼
0.015 for pine, birch, and spruce, respectively). The

FIG. 1. Scaling between woody mass (M; kg) and foliage
mass (MF; kg) inside the crown. M includes live branches and
stem above crown base (defined as the base of the continuous
crown, with no more than two consecutive internodes without
live branches). Key to symbols: circles and solid black line, pine
(Pinus sylvestris); triangles and dashed line with dots, spruce
(Picea abies); squares and long dashed line, birch (Betula
pendula). The lines are linear least-squares fits to the log-
transformed data, x ¼ ln(M), y ¼ ln(MF): pine, y ¼ 0.7510x �
0.6105, R2 ¼ 0.88, N ¼ 29; spruce, y ¼ 0.7041x � 0.4569, R2 ¼
0.98, N¼29; birch, y¼0.7392x� 1.5709, R2¼0.98, N¼18. The
heavy black line represents the 3/4 power law (y¼ 0.75x� 1.0).
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scaling model accounts for 88–98% of the variation in

the log-transformed data.

To test the predictions of Eq. 3, we first analysed the

whole-tree allometry separately for the cross-sectional

and longitudinal data sets. In the cross-sectional data

sets, all trees came from the same even-aged stands,

suggesting that any variation in crown ratio was caused

by competition. Larger trees then tend to have larger

crown ratios (Holdaway 1986, Hasenauer and Monser-

ud 1996). In this case, when MF was regressed directly

against MT without accounting for rC, the allometric

exponent appeared considerably larger than z/(az þ 1),

as determined by the crown analysis (Fig. 2A). The

exponents were statistically significantly larger than 0.75

for pine and birch (P , 0.001) but not for spruce (P ¼
0.088).

By contrast, observations of mean or dominant trees

from stands of different ages tend to show decreasing

crown ratios with increasing tree size (Holdaway 1986,

Mäkelä and Vanninen 1998). Indeed, the allometric

exponents appeared smaller than z/(az þ 1) when the

longitudinal data was analysed without accounting for

crown ratio (Fig. 2B). All exponents were statistically

significantly smaller than 0.75 (P , 0.001). However,

including crown ratio as suggested by Eq. 3 caused both

types of data to fall about the same line, with scaling

exponents similar to those in the crown, as predicted by

Eq. 1 (Fig. 2C). The exponents for spruce and pine were

not statistically significantly smaller than 0.75 (P¼ 0.056

and P ¼ 0.33, respectively), but the exponent for birch

was (P , 0.001).

DISCUSSION

Our analysis has shown that crown ratio influences

the allometric scaling between foliage and woody mass

in trees. Because crown ratio varies, largely according to

the growth history of the tree, universal scaling

exponents cannot be defined for trees. This kind of

size-dependent allometry has been pointed out previ-

ously (e.g., Niklas 1995, Chambers et al. 2001, Niklas

and Spatz 2004), however, we have for the first time

been able to attribute the size dependence to crown

ratio.

The pipe model provides a conceptual framework for

incorporating the dynamic processes that lead to crown

rise and the related changes in allometry. The disuse of

pipes following branch death is the central driver in this

development. The key assumption used in the deriva-

tion, Eq. 2, was an empirical one and did not appear to

follow directly from any general analysis. In the pipe

model, the shape of the trunk is determined largely by

the rate of crown rise relative to height growth, which in

FIG. 2. Scaling between aboveground woody mass (MT; kg)
and foliage mass (MF; kg) in the tree. MT includes live branches
and the trunk. Key to symbols: circles and solid black line, pine
(Pinus sylvestris); triangles and dashed line with dots, spruce
(Picea abies); squares and long dashed line, birch (Betula
pendula). The lines are linear least-squares fits to the log-
transformed data. The heavy black line represents the 3/4 power
law (y¼ 0.75xþC, where C is an appropriate number to bring
the line level with the data). (A) For each species, data include
trees of different dominance position in one even-aged stand; x¼
ln(MT), y¼ ln(MF): pine, y¼1.3011x� 4.1278,R2¼0.96,N¼10;
spruce, y ¼ 1.0028x � 3.2726, R2 ¼ 0.77, N ¼ 12; birch, y ¼
1.1381x� 4.2599, R2¼ 0.95, N¼18. (B) Data include dominant
(and other for spruce) trees from stands of variable age; x ¼
ln(MT), y¼ ln(MF): pine, y¼0.3338xþ0.5592,R2¼0.81,N¼18;
spruce, y ¼ 0.5868x � 0.5772, R2 ¼ 0.95, N ¼ 29; birch, y ¼
0.55908x� 1.2595, R2¼ 0.97, N¼ 12. (C) All data are pooled to

fit y¼ ln(MF) against x¼ ln(r2
C MT): pine, y¼ 0.7283x� 0.5074,

R2¼ 0.86, N¼ 29; spruce, y¼ 0.7081x� 0.3569, R2¼ 0.96, N¼
29; birch, y¼ 0.6623x� 1.2402, R2¼ 0.96, N¼ 30.
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turn depends on the competitive status of the tree

(Mäkelä 2002, Valentine and Mäkelä 2005). It is

possible to show analytically that if crown rise is

proportional to height growth at all times, then Eq. 2

follows in a pipe model tree. The same is approximately

true of trees that follow this strategy approximately,

which indeed seems to be the case in real trees (Valentine

and Mäkelä 2005). Mäkelä (2002) demonstrated that the

stem shape in such trees is also in agreement with the

theory of constant strain (Morgan and Cannell 1994),

and that both approaches produce realistic stem shapes

(Mäkelä 2002).

That ‘‘the largest trees may . . . deviate from . . .

allometric scaling relations due to the shedding of

terminal branches associated with senescence’’ has

already been recognized as a need to ‘‘add subtle detail’’

to the quarter-power scaling model (Enquist 2002). Our

model adds detail in terms of crown ratio, and our

analysis suggests that this detail is appropriate for trees

of any size, not just the largest trees. Crown rise starts at

canopy closure, which largely depends on stand density.

In managed boreal forests, for example, it occurs around

the age of 20 years at less than 30% of maximum tree

height (Hynynen 1995). The increasing proportion of

disused pipe area with increasing stem diameter below

the crown also explains why the area-specific conduc-

tivity should decrease with increasing cross-sectional

area at breast height (Meinzer et al. 2005), contrary to

the prediction by the quarter-power scaling model

(Enquist 2002).

Inside the crown, the consequences of the disuse of

pipes were of less significance in our data, which

suggested that the taper parameter a could only be

slightly larger than 1. However, it seems plausible to

assume that some trees show stronger tapering of

heartwood than others. For example, old conifers with

large crowns but little crown rise should have a

considerable heartwood content at the base of the

crown, whereas the crowns of younger, fast growing

trees primarily consist of sapwood (Vanninen et al. 1996,

Longetaud et al. 2005). An interesting consequence of

our derivation is that because z ¼ 2/aa, crowns with

larger heartwood taper should develop sparser crowns,

provided that the height-diameter scaling exponent a
remains constant. Empirical observation supports this

finding in Scots pine, where z was smaller in old than

young trees (Mäkelä and Vanninen 1998).

Our model of crown structure was stimulated by the

well-known scaling model by West et al. (1997, 1999,

Enquist 2002), though the present formulation uses a

proper fractal, rather than a finite fractal-like branching

network with terminal internodes of fixed length. It

turns out that the fractal-like model of West et al. (1999)

approaches quarter-power scaling asymptotically,

though for practical purposes, convergence is achieved

within 20 branching levels. A fractal-like model affords

the investigation of sap flow through tapering vascular

tubes (West et al. 1999, Enquist 2002, Mäkelä and

Valentine 2006), but we do not require vascular tubes,

tapering or otherwise, to investigate the effect of crown

ratio on allometric scaling. Besides, the pipe model with

its area-preserving unit pipes was intended to be a

conceptual model of stem form in trees (Shinozaki et al.

1964); it was never intended to be a structural or

functional model of vascular vessels or tracheal ele-

ments.

As a result, our fractal model is not concerned with

water relations, but with scaling of size only. The

assumptions about active pipe properties (e.g., Enquist

2002) are hence largely irrelevant for our results, which

rely on the properties of the bundles of active and

disused pipes only. In fact, our fractal model is therefore

an application of the model originally proposed by

Mandelbrot for trees following area-preserving branch-

ing (Mandelbrot 1983). However, the recent results by

Meinzer et al. (2005) suggest that simply accounting for

disused pipes may provide a more adequate first

approximation of mean conductivity properties than

the derivations of the quarter-power scaling model that

ignore the disuse of pipes.

The significance of crown ratio in the biomass

relations and form of trees has already been pointed

out previously in studies applying the pipe model (e.g.,

Mäkelä and Vanninen 1998, Ilomäki et al. 2003,

Valentine and Mäkelä 2005). The added value of the

fractal approach is that it actually allows us to derive the

allometric scaling exponents between wood and foliage

(Eqs. 1 and 3). However, this requires some simplifying

assumptions that have been avoided in previous pipe

model derivations. For example, all active pipes have

equal length in the fractal model, while average pipe

length is an empirical parameter in the pipe model

approach (e.g., Valentine and Mäkelä 2005). This turned

out to be critical for deriving Eq. 3, where the empirical

instead of theoretical pipe length had to be used for

consistency (Appendix D).

Our analysis has shown that the dynamics of disused

pipes and especially the phenomenon of crown rise are

of primary importance for scaling between woody mass

and foliage in trees. In addition of their theoretical

interest, these results could have practical value, e.g., for

developing operational methods to estimate carbon

budgets in forested areas. These results promote the

inclusion of crown ratio as a standard measure in forest

inventories, as well as suggest that stronger efforts

should be taken to improve the quantitative models of

branch senescence and crown rise.
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APPENDIX A

Complete list of symbols used in the model (Ecological Archives E087-176-A1).

APPENDIX B

Greenhill scaling and fractal dimension in the branching network (Ecological Archives E087-176-A2).

APPENDIX C

Scaling in the crown (Ecological Archives E087-176-A3).

APPENDIX D

Scaling in the whole tree (Ecological Archives E087-176-A4).
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